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LE'lTER TO THE EDITOR 

Quantum Euler-Manakov top on the 3-sphere S, 

I V Komarov and V B Kuznetsov 
Department of Mathematical and Computational Physics, Institute for Physics, Leningrad 
University, Leningrad 198904, USSR 

Received IS April 1991 

Ab&". We C O ~ S I ~ U C I  the harmonic polynomials on the real &sphere associated with 
the separation of the Laplace operator in general ellipsoid coordinates. They describe a 
hasis of an irreducible unitary representation of the 4 4 )  Lie algebra coming from the 
quantum integrable system: the Euler-Manakov top on the 3-sphere S, or, equivalently, 
a 2-site 4 2 )  XYZ Gaudin magnet. An isomorphism of this model with the 4-site s u ( I , l )  
XXX Gaudin magnet is established. The final two-parameter spectral problem is efficiently 
solved. 

Let us consider the quantum integrable system on the 3-sphere S, which is defined as 
a special case of the Euler-Manakov top on the o(4) Lie algebra, having a complete 
set of quadratic integrals of motion. There are two such tops on the S,-sphere: the 
Manakov and Steklov ones (see, for example, [l]). Here we study the first one. 

The quantum integrable system considered generates a non-subgroup-type basis of 
an irreducible unitary representation of the o(4) algebra, and is of interest in atomic 
physics [2]. 

Two commuting quadratic functions on the o(4) generators ( a  and b being arbitrary 
real constants) 

b - a - 1  
I - a - b  Y = b ( 1 -  a ) ( & +  t : ) + a ( l -  b ) ( s : +  1:) + 2 b ( l -  a )  ~ s2t2 

a - b - 1  
1 - a - b  +2a(  1 - b )  S3fI 

are considered as two integrals of motion and fix the system [2]. Here the generators 
si, t i ,  i = 1,2,3,  obey the standard commutation relations ( o ( ~ ) = s u , ( ~ ) ~ s u , ( ~ ) ) :  

[si, sjl = EgkI*Sk [ti, $I= Eijktk [Si, r , ]=O. (2) 

The o(4) Cisimir operators 

C=-2(?+P) 2. = 2(-S2+ P )  (3) 

supplement two integrals (1) to the complete set of mutually commuting operators. 
Let us consider the following 2 x  2 L-operator: 

L(u) = i [s,o,(u - x ) +  t i O i ( U  + X)]Uj/2 (4) 
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where uj are the standard Pauli matrices, x is a constant and the elliptic functions oi 
are expressed as follows: 

Let us introduce the following notation for the tensor product 
I 2 

L(u) = L( u ) O  I L(u)  = IOL(  U) ( 6 )  
where I denotes a 2 x 2  unity matrix. Then the L-operator (4) satisfies the equation 

We can call the integrable system generated by the determinant of the L-operator (4) 
a 2-site su(2) XYZ Gaudin magnet [3]. 

The integrals of motion are extracted from an L-operator by means of a standard 
procedure, so we have 

3 
HI = 1 o,s,tj 

i - l  

oj = W i ( 2 X ) .  

It can be easily shown that two integrals (9) are equivalent to the pair of previous 
ones (1) with the following correspondence: 

X = H,/w, 

o l + w 3  b=-,  w 1 + 0 2  a =- 
O 2 + 0 3  O 2 + 0 3  

The equations (4)-(10) have the same form both in classical and quantum mechanics. 
The equations of motion in  these two approaches are also identical and can be 
represented in the Lax form 

i ( u ) = [ U u ) ,  4 u ) l  (11) 
where the explicit form of A-matrix depends on the Hamiltonian chosen and is derived 
from the fundamental relation (7) [l]. 

We are looking for the common eigenfunctions of the operators X and Y. Consider 
the Hilbert space of square-integrable functionsf(%) on the 3-sphere S,: X:-, x'. = 1. 
There the generators si, r, can be written in terms of the differential operators DmS = 
xedS -x,J.,wherea, denotesd/dx,.TheHilbertspaceis thedirectsum %f-X&,O%, 
where the (2s + l)2-dimensional spaces consist of the C"-functions 

(z2= f 2  on 2). F ( f ) :  ;*F = i2F = -s(s + i ) ~  
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is equal to zero, The problem will be to find the basis in Zs. The Casimir operator 
while C takes the form 

C = -2(i2+ i2) = -A+ P 2 + 2 P  (12) 

whereA=XJ:and P=Zxx.J,. 

SI [2] (e, being arbitrary real constants) 
Let us introduce the system of ellipsoid coordinates pi ,  i = 1,2,3, on the 3-sphere 

Notice that we choose e. to be arbitrary, although one must put 

e,=O e 2 = 1  e, = a e4= b (14) 

to deal with the operators X and Y (1) .  The pi, e, satisfy the inequalities 

el < P ,  < e 6  p2< e3< P, < e,. 

This system is the most general orthogonal coordinate one on the 3-sphere S3 
We consider the following spectral problem 

+CF(P)=s(s+l)F(x). (15) 

Changing the variables x, + p,, one obtains the factorization of the eigenfunction F(f): 

The separation equations are [2] 

They have just the same form for the different i. The generalized Lam6 differential 
equation (16) is of the Fuchsian type with four elementary regular singularities at e, 
and a regular singularity at infinity with the exponents s and -s  - 1. It appears that 
the separation constants A and p in (16) are the eigenvalues of X and Y 

X F ( f )  = AF(f) YF(X) = p F ( f )  (17) 

with the set of e, from (14). To construct F (and A )  we will apply the following: 

Theorem 1. A complete basis in Z, of (2s+ 1)2 eigenfunctions F ( f )  diagonalizing the 
operators C, X and Y is determined by 

where M and K E Z, = {0, 1 ,2 , .  . .), K S4,  and M and K are constrained by 2s = 
2M + K ;  U, E {1,2,3,4), ai # aj if i # j. The real parameters uq satisfy the system of 
M nonlinear equations ( q  = 1,. . . , M) 
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When K =0, the first factor in (18) must be taken as 1 and the second sum in (19) 
should be omitted. Equations (19) are derived by direct substitution of F(f) (18) into 
equation (15). To prove the completeness we need the following: 

Theorem 2. (Stieltjes [4]). Let M, K and {aj} be fixed. Then there exist exactly C',,, 
eigenfunctions F ( j ,  {uq})  with different sets of uq which are the different solutions of 
equations (19). 

Corollary 1. Separation (partial) functions &(e) have the form 

The zeros up of the Stieltjes polynomials (20) are the critical points of the function 
IGI, where 

M 4  M 

.n=1 m = l  r=o+,  
G(~,,..,uM)= n II (u,-e,)'- Il (u , -u , ) .  (21) 

Here we imply that k, =$if  (I E! {aj], and k, =;otherwise. A unique&(pi) corresponds 
to each of the C',+2 ways of distributing its M zeros U,, among the three intervals 
( em,  e=+,). 

M Corollary 2. Each solution F(f) with {aj},"=, and {U},=, fixed determines the following 
eigenvalues A and p: 

Recall that this A and p are the spectrum of the operators X and Y ( l ) ,  respectively, 
provided that (14) is true. 

Thus we have constructed the basis by polynomials multiplied by square roots 
depending on the type of solution. This is the index K that defines the type of solution 
each consisting of the C," eigenfunctions. It should be noted that various types can 
be described by action of the direct product of the two dihedrai groups D, x D,, which 
is the invariance discrete group of operators X and Y [2]. 

Gaudin [3] pointed out that the magnet he has studied is connected with the 
procedure of variable separation. He dealt with the su(2) magnet. We formulate here 
the exact correspondence between our problem and the hyperbolic 4-site XXX Gaudin 
magnet. 

iiecaii some facts from tine aigebraic ijethe ansaiz for the suji, i )  X X X  Gaudin 
magnet [ 5 ] .  Let 2'( U )  be a 2 x 2 matrix, depending on arbitrary complex parameter U, 
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The generators rb, i = 1,2,3,  satisfy the commutators 

[rb, /:] = -i ~ s ~ ~ E : ~ ~ / E ~ ~ ~  W=diag(-l, -1, 1). (24) 

We will consider the boson representation: 

(25) I +2 /+ = I ,  +i/, =za 1 2  / ,= i {a+,a}  /_ = I, - i12 = I a  

where [a, a'] = 1 and the Casimir operator is C,= I : -  I ; - / ; =  -A. 
9-operator (23) obeys the XXX r-matrix algebra 

The integrals of motion for this system are extracted from the g 2 ( u )  (in g-metric), 
obeying 

[ P ( u ) ,  9 ' 2 ( u ) ] = O .  (27) 

The eigenfunctions of the complete set of integrals H ,  and 

can be constructed by means of the algebraic Bethe ansatz. Let us introduce the vacuum 
state 

d 

where each of the x, is equal to 0 or 1. This state possesses a number of important 
properties: 

2ty u)lO) = 0 

P(u)ln)= f ( u ) l n )  t ( u )  = a'(u)+a'(  U). 

Now we can formulate the following: 

Theorem 3 [SI. Each vector 

(U,, .. ., u d = 9 + ( u , ) .  . . z+(uM)ln) 
is an eigenvector of p2(u) with the eigenvalue 

if and only if numbers {U,, . . . , u M )  satisfy the equations 



L742 Letter to the Editor 

Equations (33) are just the same as ones (19) in theorem 1. Hence, we can say that 
we have established an isomorphism of the Hilbert spaces: of the Euler-Manakov top 
on the 3-sphere S ,  and of the hyperbolic Gaudin magnet. According to this isomorphism 
the infinite-dimensional representation space of the Gaudin system, the basis of which 
is given by the vectors (31), must be factorized by su(1,l) total spin algebra J to obtain 
the (2s+l)2-dimensional space YC, the basis of which is given by the vectors (18). 

Our results demonstrate close connections between different problems and 
approaches. First, we have identified a construction of an ellipsoid basis on the S, 
sphere and spectral problem for the 2-site 4 2 )  XYZ Gaudin magnet. The eigenfunc- 
tions are found with the help of nonlinear algebraic equations for their zeros. It allowed 
us to obtain the solution that generalizes the standard treatment of the Lame poly- 
nomials. Further, the basic nonlinear equations (19) were interpreted in terms of the 
k i t e  su(1 , l )  XXX Gaudin magnet. Thus the unknown isomorphism between two 
different Gaudin magnets was established. This further evidence that different Lax 
matrices can correspond to the same dynamicai system. Tne extension of our resuirs 
to the S. sphere will be published elsewhere. 

Eigenfunctions of the form similar to (18) have been constructed in [6] for the 
most general complete set of commuting operators on the sphere in four-dimensional 
complex space. 
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and comments on the results. 
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